domingo, 16 de junho de 2013

  Este curso de Formação Continuada em Matemática composto por encontros presenciais e atividades online (virtuais), trouxe informações para muitos professores ao mesmo tempo, com compartilhamento de discussões e experiências.
    O curso da ênfase na importância da leitura e da narrativa no Ensino da Matemática.
    Concordo com a frase de Edward Gilbon: "A leitura não deve ser mais do que um exercício para nos obrigar a pensar".

Devanilde Penariol Silva




sábado, 15 de junho de 2013

9° Ano

Trinômio do Quadrado Perfeito

Trinômio do quadrado perfeito é o 3º caso de fatoração de expressão algébrica. Ele só pode ser utilizado quando a expressão algébrica for um trinômio (polinômio com três monômios) e esse trinômio formar um quadrado perfeito.

O que é trinômio

Trinômio é um polinômio que tem três monômios sem termos semelhantes, veja exemplos:

3x2 + 2x + 1

20x3 + 5x – 2x2

2ab +5b + 3c

Nem todos os trinômios acima podem ser fatorados utilizando o quadrado perfeito.

O que é quadrado perfeito

Para melhor entender o que é quadrado perfeito, veja:

Podemos considerar um número sendo quadrado perfeito? Sim, basta que esse número seja o resultado de outro número elevado ao quadrado, por exemplo: 25 é um quadrado perfeito, pois 52 = 25.
Agora, devemos aplicar isso em uma expressão algébrica, observe o quadrado abaixo com lados x + y, o valor desse lado é uma expressão algébrica.



Para calcularmos a área desse quadrado podemos seguir duas formas diferentes:

1º forma: a fórmula para o cálculo da área do quadrado é A = Lado2 , então, como o lado nesse quadrado é x + y, basta elevá-lo ao quadrado.

A1 = (x + y)2

O resultado dessa área A1 = (x + y)2 é um quadrado perfeito.

2º forma: esse quadrado foi dividido em quatro retângulos onde cada um tem a sua própria área, então a soma de todas essas áreas é a área total do quadrado maior, ficando assim:

A2 = x2 + xy + xy + y2, como xy e xy são semelhantes podemos somá-los

A2 = x2 +2xy + y2

O resultado da área A2 = x2 +2xy + y2 é um trinômio.


As duas áreas encontradas representam a área do mesmo quadrado, então:

A1 = A2
(x + y)2 = x2 +2xy + y2

Então, o trinômio x2 +2xy + y2 tem como quadrado perfeito (x + y)2.

Quando tivermos uma expressão algébrica e ela for um trinômio do quadrado perfeito a sua forma fatorada é representada em forma de quadrado perfeito, veja:

O trinômio x2 +2xy + y2 fatorado fica (x + y)2.


Como identificar um trinômio do quadrado perfeito

Como já foi dito, nem todo trinômio pode ser representado na forma de quadrado perfeito. Agora, quando é dado um trinômio como iremos identificar que é quadrado perfeito ou não?

Para que um trinômio seja quadrado perfeito ele deve ter algumas características:

• Dois termos (monômios) do trinômio devem ser quadrados.
• Um termo (monômio) do trinômio deve ser o dobro das raízes quadradas dos dois outros termos.

Veja um exemplo:

Veja se o trinômio 16x2 + 8x + 1 é um quadrado perfeito, para isso siga as regras acima:


Dois membros do trinômio têm raízes quadradas e o dobro delas é o termo do meio, então o trinômio 16x2 + 8x + 1 é quadrado perfeito.

Então, a forma fatorada do trinômio é 16x2 + 8x + 1 é (4x + 1)2, pois é a soma das raízes ao quadrado.

Veja alguns exemplos:

Exemplo 1:

Dado o trinômio m2 – m n + n2 , devemos tirar as raízes dos termos m2 e n2 , as raízes serão m e n, o dobro dessas raízes será 2. m . n que é diferente do termo m n (termos do meio), então esse trinômio não é quadrado perfeito.

Exemplo 2:

Dado o trinômio 4x2 – 8xy + y2, devemos tirar as raízes dos termos 4x2 e y2 , as raízes serão respectivamente 2x e y. O dobro dessas raízes deve ser 2 . 2x . y = 4xy, que é diferente do termo 8xy, então esse trinômio não poderá ser fatorado utilizando o quadrado perfeito.

Exemplo 3:

Dado o trinômio 1 + 9a2 – 6a.
Devemos, antes de usar as regras do quadrado perfeito, colocar o trinômio em ordem crescente de expoentes, ficando assim:
9a2 – 6a + 1.
Agora, tiramos a raiz dos termos 9a2 e 1, que serão respectivamente 3a e 1. O dobro dessas raízes será 2 . 3a . 1 = 6a, que é igual ao termo do meio (6a), então concluímos que o trinômio é quadrado perfeito e a forma fatorada dele é (3a – 1)2.
Fonte: Brasil Escola
8º Ano
Trabalho de Matemática
Profª Titular: Denis Inês de Oliveira Godoy
Profª Subst. : Ana Carolina Peruquetti
Introdução às equações de primeiro grau
Para resolver um problema matemático, quase sempre devemos transformar uma sentença apresentada com palavras em uma sentença que esteja escrita em linguagem matemática. Esta é a parte mais importante e talvez seja a mais difícil da Matemática.
Sentença com palavras
Sentença matemática
2 melancias + 2Kg = 14Kg
2 x + 2 = 14
Normalmente aparecem letras conhecidas como variáveis ou incógnitas. A partir daqui, a Matemática se posiciona perante diferentes situações e será necessário conhecer o valor de algo desconhecido, que é o objetivo do estudo de equações.
Equações do primeiro grau em 1 variável
Trabalharemos com uma situação real e dela tiraremos algumas informações importantes. Observe a balança:

A balança está equilibrada. No prato esquerdo há um "peso" de 2Kg e duas melancias com "pesos" iguais. No prato direito há um "peso" de 14Kg. Quanto pesa cada melancia?
2 melancias + 2Kg = 14Kg
Usaremos uma letra qualquer, por exemplo x, para simbolizar o peso de cada melancia. Assim, a equação poderá ser escrita, do ponto de vista matemático, como:
2x + 2 = 14
Este é um exemplo simples de uma equação contendo uma variável, mas que é extremamente útil e aparece na maioria das situações reais. Valorize este exemplo simples.
Podemos ver que toda equação tem:
  • Uma ou mais letras indicando valores desconhecidos, que são denominadas variáveis ou incognitas;
  • Um sinal de igualdade, denotado por =.
  • Uma expressão à esquerda da igualdade, denominada primeiro membro ou membro da esquerda;
  • Uma expressão à direita da igualdade, denominada segundo membro ou membro da direita.
No link Expressões Algébricas, estudamos várias situações contendo variáveis. A letra x é a incógnita da equação. A palavra incógnita significa desconhecida e equação tem o prefixo equa que provém do Latim e significa igual.
2 x + 2
=
14
1o. membro
sinal de igualdade
2o. membro
As expressões do primeiro e segundo membro da equação são os termos da equação.
Para resolver essa equação, utilizamos o seguinte processo para obter o valor de x.
2x + 2 = 14
Equação original
2x + 2 - 2 = 14 - 2
Subtraímos 2 dos dois membros
2x = 12
Dividimos por 2 os dois membros
x = 6
Solução
Observação: Quando adicionamos (ou subtraímos) valores iguais em ambos os membros da equação, ela permanece em equilíbrio. Da mesma forma, se multiplicamos ou dividimos ambos os membros da equação por um valor não nulo, a equação permanece em equilíbrio. Este processo nos permite resolver uma equação, ou seja, permite obter as raízes da equação.
Exemplos:
  1. A soma das idades de André e Carlos é 22 anos. Descubra as idades de cada um deles, sabendo-se que André é 4 anos mais novo do que Carlos.
Solução: Primeiro passamos o problema para a linguagem matemática. Vamos tomar a letra c para a idade de Carlos e a letra a para a idade de André, logo a=c-4. Assim:
c + a = 22
c + (c - 4) = 22
2c - 4 = 22
2c - 4 + 4 = 22 + 4
2c = 26
c = 13
Resposta: Carlos tem 13 anos e André tem 13-4=9 anos.
  1. A população de uma cidade A é o triplo da população da cidade B. Se as duas cidades juntas têm uma população de 100.000 habitantes, quantos habitantes tem a cidade B?
Solução: Identificaremos a população da cidade A com a letra a e a população da cidade com a letra b. Assumiremos que a=3b. Dessa forma, poderemos escrever:
a + b = 100.000
3b + b = 100.000
4b = 100.000
b = 25.000
Resposta: Como a=3b, então a população de A corresponde a: a=3×25.000=75.000 habitantes.
  1. Uma casa com 260m2 de área construída possui 3 quartos de mesmo tamanho. Qual é a área de cada quarto, se as outras dependências da casa ocupam 140m2?
Solução: Tomaremos a área de cada dormitório com letra x.
3x + 140 = 260
3x = 260 -140
3x = 120
x = 40
Resposta: Cada quarto tem 40m2.
Exercícios: Resolver as equações
1. 2x + 4 = 10
2. 5k - 12 = 20
3. 2y + 15 - y = 22
4. 9h - 2 = 16 + 2h